
• Perron’s theorem can be extended to some non-negative
matrices.

• Perron’s theorem conclusion is not valid for all non-negative
matrices.

Example....

We now introduce non-negative irreducible matrices.



Our aim is to show the following theorem:

Theorem
Let A ≥ 0 be an irreducible matrix of order n, n > 1. Then the
following are true:

• ρ(A) is an eigenvalue.

• There is a positive eigenvector of A associated with the
eigenvalue ρ(A).

• No non-negative eigenvector is associated with any other
eigenvalue of A.

• ρ(A) is simple.



Let A be irreducibe, n × n and non-negative.

Then, (I + A)n−1 > 0.

Put ρ := ρ(A) and R := spectral radius(I + A)n−1

We now show that
(1 + ρ)n−1 ≤ R.

Note: If ρ is an eigenvalue of A, then this is immediately true.

But we don’t know this.

So, some argument is needed.



Step 1 will be to show the above inequality.

• Let Ax = λx and x 6= 0.

• m(Ax) = m(λx) = |λ|m(x).

• Consider λ for which |λ| = ρ.

We already know that

m(Ax) ≤ Am(x).

Use all these inequalities + m(Ax) ≥ 0.



m(Ax) = |λ|m(x) = ρm(x) ≤ Am(x).

What we need is:
ρm(x) ≤ Am(x).

Multiply by ρ.

ρ2m(x) ≤ ρAm(x)
= Aρm(x)

≤ A2m(x)



In general for any k ,

ρkm(x) ≤ Akm(x).

It follows that

(1 + ρ)n−1m(x) ≤ (I + A)n−1m(x). Why? (1)

Apply Perron’s theorem to the transpose of (I + A)n−1.

There exists y > 0 such that

yT (I + A)n−1 = RyT , y > 0.

Hence by (1),

(1 + ρ)n−1yT m(x) ≤ RyT m(x).



• yT m(x) > 0.

So,
(1 + ρ)n−1 ≤ R.

This completes step 1.

Use the above inequality to show that ρ is an eigenvalue of A.
This is step 2.



Let the eigenvalues of A be α1, α2, . . . , αn.

Then, the eigenvalues of (I + A)n−1 are:

(1 + α1)
n−1, (1 + α2)

n−1, . . .

(I + A)n−1 is positive.

By Perron’s theorem, spectral radius of (I + A)n−1 is an
eigenvalue of (I + A)n−1.



For some k , R = |(1 + αk )
n−1|.

Put µ = αk .

From step (1),

(1 + ρ)n−1 ≤ R.

This means that:

(1 + ρ)n−1 ≤ |(1 + µ)n−1|.



Taking the (n − 1)-th root on both the sides gives:

1 + ρ ≤ |1 + µ|.

Also,
|1 + µ| ≤ 1 + |µ|

µ = αk is one of the eigenvalues of A.

So, |µ| ≤ ρ(A).

Now write all the inequalities:

1 + ρ ≤ |1 + µ| ≤ 1 + |µ| ≤ 1 + ρ.

Hence,
|1 + µ| = 1 + |µ|.

This gives µ ≥ 0 and ρ ≤ |µ|.

Hence, µ = ρ.



Thus, spectral radius is an eigenvalue of an irreducible
non-negative matrix.

The first assertion is complete.

We now prove the following assertion of the Frobenius theorem:

If x ∈ Rn is an eigenvector of A associated with ρ, then we
show the following:
• m(x) is an eigenvector of A.

• m(x) > 0.



To complete the proof it is very simple.

Just go back to the proof of the first assertion.

• Let Ax = ρx and x 6= 0.

• m(Ax) = m(ρx) = ρm(x).

We already know that

m(Ax) ≤ Am(x).

Suppose m(Ax) = Am(x). Then,

Am(x) = ρm(x).

So, m(x) will be an eigenvector of A corresponding to the
spectral radius.



Difficulty arises only when the inequality

m(Ax) ≤ A(m(x))

is strict.

We now get a contradiction by assuming that

m(Ax) < A(m(x)).

But,
m(Ax) = m(ρx) = ρm(x).



So,
m(Ax) < A(m(x))

implies that
ρm(x) < Am(x).

ρ2m(x) < ρAm(x)
= A(ρm(x))

< A(Am(x)) = A2m(x).



In general for any k ,

ρkm(x) < Akm(x).

If f is any polynomial with positive coefficients, then

f (ρ)m(x) < f (A)m(x).

(Why?)



Define
g(δ) := (1 + δ)n−1.

g is a polynomial with positive coefficients.

So,

g(ρ)m(x) ≤ g(A)m(x).

Hence,
(1 + ρ)n−1m(x) < (I + A)n−1m(x).



As before, let
R := ρ(I + A)n−1.

R is the spectral radius of (I + A)n−1.

Apply Perron’s theorem to (I + A)n−1.

There exists y > 0 such that

yT (I + A)n−1 = RyT .



We have
(1 + ρ)n−1m(x) < (I + A)n−1m(x).

and

yT (I + A)n−1 = yT R, y > 0.

Hence
(1 + ρ)n−1yT m(x) < RyT m(x).

This gives
(1 + ρ)n−1 < R.



By Perron’s theorem R must be an eigenvalue of (I + A)n−1.

If f is a polynomial, and if λ is an eigenvalue of A, then f (λ) is
an eigenvalue of f (A).

Denote the eigenvalues of A by α1, . . . , αn.

Then the eigenvalues of g(A) are:

(1 + α1)
n−1, (1 + α2)

n−1, . . .

Since R is an eigenvalue of g(A).

β = |(1 + αk )
n−1|

for some k .

Set µ = αk .



We have
R = |1 + µ|n−1.

Already we have
(1 + ρ)n−1 < R.

So,
(1 + ρ)n−1 < |1 + µ|n−1.

This gives
1 + ρ < |1 + µ|.

So, ρ < |µ|.

This is a contradiction.



Hence strict inequality in

Am(x) ≤ m(Ax)

is not possible.

So,
Am(x) = m(Ax)

= m(ρx)
= ρm(x).

(2)



Claim: m(x) > 0

Akm(x) = ρkm(x).

Recall: g(δ) = (1 + δ)n−1.

Hence,
g(ρ)m(x) = g(A)m(x).

But g(A) > 0.

m(x) is non-negative.

So, by Perron’s theorem, m(x) > 0.



We have shown the following:

If A is a non-negative irreducible matrix, then Ax = ρx for some
x > 0.

From, the arguments we have seen so far,

Ax = ρx ⇒ (I + A)n−1x = (1 + ρ)n−1x .

Nullity of A− ρI and Nullity of (I + A)n−1 − ρI must be same.

Thus, geometric multiplicity of ρ is 1.



Let A ≥ 0 be an irreducible matrix. Then, ρ(A) is called the
Perron root of A.

Associated eigenvector is called Perron vector.

Algebraic multiplicity of ρ is one.

(Note: This will imply that geometric multiplicity is one).



Suppose ρ is not a simple eigenvalue of A.

Then, there exist v and w such that

Av = ρv

Aw = v + ρw .

Exercise



We have v > 0.

yT (A− I)w = vT y

Let y be the left Perron vector of A.

Then, vT y = 0.

But vT y cannot be 0.



Suppose,
Ay = αy , α 6= ρ, y ≥ 0.

Then get a contradiction.

Exercise.

We have proved Frobenius theorem.



What happens for reducible non-negative matrices?

What can be said about principal submatrix of a non-negative
matrix?


