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Let X be a real vector space.

If it has a basis, it is called finite dimensional.

(This means that there exist vy,..., vy in X such that vy, ...

are linearly independent and

span{Vvy,...,Vp} = X.)

Let (.,.) be an inner-product defined on X.

An inner-product can always be defined.
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Now the distance between any two vectors in X can be defined.
Let x € X.

Then ||| := /{x. x).

||x|| is the distance between the zero vector and x.

|Ix — y|| is the distance between x and y.

Open balls in X:

Fix a point ain X and r > 0.

B(a,r):={xe X:|x—a| <r}.



e B(a,r) is called the open ball in X with center a and radius r.
oletQ C X.

e Let p € Q. Then, pis called an interior point of Q if there
exists an open ball B(p, r) C Q.

e If all points of Q2 are interior points, then Q is called an open
setin X.

e Examples...



e Aset F C Xis called closed if F€ is open.
Recall: F¢ = X\ F.
F is closed iff

Xm € F (Vm), n!i_r)nooxm:p = peF.

Examples...

Given a set G in X, int(G) is the subset of G that contains all
interior points of G.

int(G) is an open set in X.



Given any two vectors x and y in R”, the standard dot product
xTy is an inner-product between x and y.

1
Ixll = O +5G + -+ x5)2.
R" is closed in R".

int(R7) = R” ..



Conesin X

Consider a set K C X such that 0 € K.

We will say that K is a cone if
xeKandye K = x+yeKkK.
a>0andx e K = ax € K.

K is a closed set in X.

K has an interior point.

5. If x e Kand x € —K, then x = 0.

oD~

« Notice that R’] satisfies all the above conditions.
e Hence R’ is a cone.



Lorentz cone

Other names:
Second-order cone, Ice-cream cone

First we write a vector x = (xq, ..., Xp) in R” as follows:

X = (X17p)a p= (X27--~7Xn)~

Kn:={xeR":|p]| < x1}.
For example in R3,

K={(x,y,2):y? + 2> < x?, x>0}.



The above definition can be generalized.
Fix 1 < p < o0.
If x € R" define

a(x) == (|x1 P + [Xo|P| + - - + |xnlP)V/P.

Define
K :={(a,x) e RxR": g(x) < a.}

K is a cone in R™1,



Fix N a positive integer.
Let V be the set of all symmetric real matrices of order N x N.

V is a vector space with usual matrix addition and scalar
multiplication.

V is a finite dimensional space.

Its dimension is N(N + 1)/2.

Let Ky be the set of all positive semidefinite matrices in V.
Ky isaconein V.



Dual cones

Given a cone K in X, there is a dual cone associated with K.
This will be denoted by K*.

K*:={veX:(v,x) >0 Vx e K}.

Self-dual cones:
K* =K.

R", Ice-cream cone and positive semidefinite cone are
self-dual cones.



Let Qbe an n— 1 x n— 1 positive definite matrix.
Define

k(Q) = {(t,x) € R": VxTQx < t}.
Exercise: Write Lorentz cone as k(Q) for some Q.
k(Q)* = k(Q ).
Unless Q is identity, k(Q) is not self-dual.

Let L : X — X be an isomorphism. Then, the dual of L(K) is
LT(K*).



L(K) = {L(x) : x € K}.

Let L~ be the inverse of the transpose of L.
Claim:

L~T(K*) = L(K)*.
Let p € L~T(K*).
We now show that p € L(K)*. Take any element g € L(K).
Verify that (p, q) > 0.
Write p = L~ (v) for some v € K* and q = L(x) for some
x e K.
(p, @) = (L7T(v), L(x)) = (v,x) > 0.
So, L=T(K*) C L(K)*.



Let y € L(K)*.

Claim: y € L=T(K*).

(y,L(x)) >0forall x € K.

So, LT(y) € K*.

So, LT(y) = x for some x € K*.

This means that y = L~7(x) for some x € K*.

In other words, y € L~T(K™).



k(Q) is an isomorphic image of the Lorentz cone.

Define

1 0
AK, is k(Q).
Now computing dual is easy.



An exercise

Let K be a cone in X.

Fix a basis for X.

{vi,..., Vn}.

Now show that there is an element y € K such that

where each ¢; # 0.



Let y € intK.

After all y is a vector, so a linear combination of vy,..., vj,.
Write y = ayvq + -+ + apVp.

Some a; may be 0.

WLOG let 0 = akyq = ... = ap.

Now, use the fact that y € int(K) and int(K) is an open set.
For some r > 0, B(y, r) C int(K).

Define z := y + § ety

ze B(y,r).



Note:

y=oqVq + -+ o Vg

Z=o0qVq+ -+ oV + Bry1 Vst Bre1 # 0.

ze B(y,r) CK.

Continue this until all the coefficients are non-zero.

In the end, we get vector in K such that the coefficients are
non-zero.



Let K be aconein X. Let x € K. Then, we say that xx € K'is a
projection of x onto K if

1. xx € K.

2.yeK = |y—x|l=lxk—x|.
Given an element x € X, we do not know whether there is a
projection.

If there is a projection of some element y in K, is there any
other vector in K which is a projection of y?

We will address the above items.



Let x € X be given.
CLAIM: Suppose a vector y satisfy the following:

(y—x,k—y)>0VkeK.

Then ||x — y|| < |[x — k|| forall k € K.
Verify the identity:

Ix = K12 = [Ix = yII2 + lly — KIZ + 20y — X,k — ).

Proof of the claim is complete.



If xx is a projection of x, then
(Xk — X, k—xKx) >0 VkeK.

PROOF:
Let0 # k € K.
Fix o € (0,1).
Define
X, = (1 — a)xk + ak.
X, € K (Why?)
Verify the identity

1
2000 — X,k — ) = —allk = xi|2 + —[Ilx = a2~ |

Second term is non-negative (Why?)
2(xk — X, k — xx) > —allk — xx|]?

This is valid for all «.

X — Xl

2]_



The proof is complete.

CLAIM: There exists at most one projection.

First we will verify this

If x and y belong to K, then ||xx — yk| < [|[x = y|.
Putd =y — xand dx = yx — xk.

We now know that (xx — x, yx — xx) > 0.

(Y = ¥Yr, ¥k — Xk) < 0.

Add the above two.

(0 — 0k, k) > 0.

Now the proof is complete from

16117 = 116 — 8l + 10k 11? + 2(6 — bk, k) = Il 6klI*.



Take x = y and apply the above inequality to see that there is
at most one projection.

CLAIM:

Given a cone K, for every vector x there is a projection.
Consider a vector x € X.

Define § := inf{||x — k|| : k € K}.

This number is well-defined (Why)

There exists a sequence {s,} in K such that

|x — sn|| — d.

Use the identity
1sm — snll? = 2] x = sml|* + 2[|x — snl|* — 4] x — (sm + sn)/2||?.

So,
ISm — Snll? < 2||x — Sml|® + 2||x — 55| — 46°.



This says that s, is Cauchy.
So,s, converges.

Let sp — p.

K is closed.

So,pe K.

Proof is complete (Since p = xk).



Let x € X.

Consider x — xx

Then, (xx — x,k — xx > 0 for all k € K.

The above inequality tells that xx — x € K* (Why?)
So,x =y —zwherey € Kand z € K*.

Show that (y, z) = 0.

Now the following can be shown: x = y — z where y € K and
z € K* implies
Yy =Xk and zZ = Xg-x.



CLAIM: K = K**.
K C K** follows by definition.
Let x € K**.
Now
X = XKk — X+, X = Xk — Xge=.
X+ = X. S0, 2X = Xk~. Add the two
2X = XK — XK
3X = Xg.

Hence, x € K.



