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Let X be a real vector space.

If it has a basis, it is called finite dimensional.

(This means that there exist v1, . . . , vn in X such that v1, . . . , vn
are linearly independent and

span{v1, . . . , vn} = X .)

Let 〈., .〉 be an inner-product defined on X .

An inner-product can always be defined.



Now the distance between any two vectors in X can be defined.

Let x ∈ X .

Then ‖x‖ :=
√
〈x , x〉.

‖x‖ is the distance between the zero vector and x .

‖x − y‖ is the distance between x and y .

Open balls in X :

Fix a point a in X and r > 0.

B(a, r) := {x ∈ X : ‖x − a‖ < r}.



• B(a, r) is called the open ball in X with center a and radius r .

• Let Ω ⊆ X .

• Let p ∈ Ω. Then, p is called an interior point of Ω if there
exists an open ball B(p, r) ⊆ Ω.

• If all points of Ω are interior points, then Ω is called an open
set in X .

• Examples...



• A set F ⊆ X is called closed if F c is open.

Recall: F c = X \ F .

F is closed iff

xm ∈ F (∀m), lim
m→∞

xm = p ⇒ p ∈ F .

Examples...

Given a set G in X , int(G) is the subset of G that contains all
interior points of G.

int(G) is an open set in X .



Given any two vectors x and y in Rn, the standard dot product
xT y is an inner-product between x and y .

‖x‖ = (x2
1 + x2

2 + · · ·+ x2
n )

1
2 .

Rn
+ is closed in Rn.

int(Rn
+) = Rn

++.



Cones in X

Consider a set K ⊆ X such that 0 ∈ K .

We will say that K is a cone if
1. x ∈ K and y ∈ K ⇒ x + y ∈ K .
2. α ≥ 0 and x ∈ K ⇒ αx ∈ K .
3. K is a closed set in X .
4. K has an interior point.
5. If x ∈ K and x ∈ −K , then x = 0.

• Notice that Rn
+ satisfies all the above conditions.

• Hence Rn
+ is a cone.



Lorentz cone

Other names:
Second-order cone, Ice-cream cone

First we write a vector x = (x1, . . . , xn) in Rn as follows:

x = (x1,p), p = (x2, . . . , xn).

Kn := {x ∈ Rn : ‖p‖ ≤ x1}.

For example in R3,

K = {(x , y , z) : y2 + z2 ≤ x2, x ≥ 0}.



The above definition can be generalized.

Fix 1 < p <∞.

If x ∈ Rn define

g(x) := (|x1|p + |x2|p|+ · · ·+ |xn|p)1/p.

Define
K := {(α, x) ∈ R× Rn : g(x) ≤ α.}

K is a cone in Rn+1.



Fix N a positive integer.

Let V be the set of all symmetric real matrices of order N × N.

V is a vector space with usual matrix addition and scalar
multiplication.

V is a finite dimensional space.

Its dimension is N(N + 1)/2.

Let KN be the set of all positive semidefinite matrices in V .

KN is a cone in V .



Dual cones

Given a cone K in X , there is a dual cone associated with K .
This will be denoted by K ∗.

K ∗ := {v ∈ X : 〈v , x〉 ≥ 0 ∀x ∈ K}.

Self-dual cones:
K ∗ = K .

Rn
+, Ice-cream cone and positive semidefinite cone are

self-dual cones.



Let Q be an n − 1× n − 1 positive definite matrix.

Define
k(Q) := {(t , x) ∈ Rn :

√
xT Qx ≤ t}.

Exercise: Write Lorentz cone as k(Q) for some Q.

k(Q)∗ = k(Q−1).

Unless Q is identity, k(Q) is not self-dual.

Let L : X → X be an isomorphism. Then, the dual of L(K ) is
LT (K ∗).



L(K ) = {L(x) : x ∈ K}.

Let L−T be the inverse of the transpose of L.

Claim:
L−T (K ∗) = L(K )∗.

Let p ∈ L−T (K ∗).

We now show that p ∈ L(K )∗. Take any element q ∈ L(K ).
Verify that 〈p,q〉 ≥ 0.

Write p = L−T (v) for some v ∈ K ∗ and q = L(x) for some
x ∈ K .

〈p,q〉 = 〈L−T (v),L(x)〉 = 〈v , x〉 ≥ 0.

So, L−T (K ∗) ⊆ L(K )∗.



Let y ∈ L(K )∗.

Claim: y ∈ L−T (K ∗).

〈y ,L(x)〉 ≥ 0 for all x ∈ K .

So, LT (y) ∈ K ∗.

So, LT (y) = x for some x ∈ K ∗.

This means that y = L−T (x) for some x ∈ K ∗.

In other words, y ∈ L−T (K ∗).



k(Q) is an isomorphic image of the Lorentz cone.

Define

A =

[
1 0
0 Q1/2

]
.

AKn is k(Q).

Now computing dual is easy.



An exercise

Let K be a cone in X .

Fix a basis for X .

{v1, . . . , vn}.

Now show that there is an element y ∈ K such that

y = c1v1 + . . .+ cnvn

where each ci 6= 0.



Let y ∈ int K .

After all y is a vector, so a linear combination of v1, . . . , vn.

Write y = α1v1 + · · ·+ αnvn.

Some αi may be 0.

WLOG let 0 = αk+1 = .... = αn.

Now, use the fact that y ∈ int(K ) and int(K ) is an open set.

For some r > 0, B(y , r) ⊆ int(K ).

Define z := y + r
2

vk+1
‖vk+1‖

.

z ∈ B(y , r).



Note:

y = α1v1 + · · ·+ αkvk .

z = α1v1 + · · ·+ αkvk + βk+1vk+1; βk+1 6= 0.

z ∈ B(y , r) ⊆ K .

Continue this until all the coefficients are non-zero.

In the end, we get vector in K such that the coefficients are
non-zero.



Let K be a cone in X . Let x ∈ K . Then, we say that xK ∈ K is a
projection of x onto K if

1. xK ∈ K .
2. y ∈ K ⇒ ‖y − x‖ ≥ ‖xK − x‖.

Given an element x ∈ X , we do not know whether there is a
projection.

If there is a projection of some element y in K , is there any
other vector in K which is a projection of y?

We will address the above items.



Let x ∈ X be given.

CLAIM: Suppose a vector y satisfy the following:

〈y − x , k − y〉 ≥ 0 ∀ k ∈ K .

Then ‖x − y‖ ≤ ‖x − k‖ for all k ∈ K .

Verify the identity:

‖x − k‖2 = ‖x − y‖2 + ‖y − k‖2 + 2〈y − x , k − y〉.

Proof of the claim is complete.



If xK is a projection of x , then

〈xK − x , k − xK 〉 ≥ 0 ∀ k ∈ K .

PROOF:

Let 0 6= k ∈ K .

Fix α ∈ (0,1).

Define
xα := (1− α)xK + αk .

xα ∈ K (Why?)

Verify the identity

2〈xK − x , k − xK 〉 = −α‖k − xK‖2 +
1
α

[‖x − xα‖2 − ‖x − xK‖2].

Second term is non-negative (Why?)

2〈xK − x , k − xK 〉 ≥ −α‖k − xK‖2

This is valid for all α.



The proof is complete.

CLAIM: There exists at most one projection.

First we will verify this

If x and y belong to K , then ‖xK − yK‖ ≤ ‖x − y‖.

Put δ := y − x and δK = yK − xK .

We now know that 〈xK − x , yK − xK 〉 ≥ 0.

〈y − yK , yK − xK 〉 ≤ 0.

Add the above two.

〈δ − δK , δK 〉 ≥ 0.

Now the proof is complete from

‖δ‖2 = ‖δ − δK‖2 + ‖δK‖2 + 2〈δ − δk , δk 〉 ≥ ‖δK‖2.



Take x = y and apply the above inequality to see that there is
at most one projection.

CLAIM:

Given a cone K , for every vector x there is a projection.

Consider a vector x ∈ X .

Define δ := inf{‖x − k‖ : k ∈ K}.

This number is well-defined (Why)

There exists a sequence {sn} in K such that

‖x − sn‖ → δ.

Use the identity

‖sm − sn‖2 = 2‖x − sm‖2 + 2‖x − sn‖2 − 4‖x − (sm + sn)/2‖2.

So,
‖sm − sn‖2 ≤ 2‖x − sm‖2 + 2‖x − sn‖2 − 4δ2.



This says that sn is Cauchy.

So,sn converges.

Let sn → p.

K is closed.

So, p ∈ K .

Proof is complete (Since p = xK ).



Let x ∈ X .

Consider x − xK

Then, 〈xK − x , k − xk ≥ 0 for all k ∈ K .

The above inequality tells that xK − x ∈ K ∗ (Why?)

So, x = y − z where y ∈ K and z ∈ K ∗.

Show that 〈y , z〉 = 0.

Now the following can be shown: x = y − z where y ∈ K and
z ∈ K ∗ implies

y = xK and z = xK∗ .



CLAIM: K = K ∗∗.

K ⊆ K ∗∗ follows by definition.

Let x ∈ K ∗∗.

Now
x = xK − xK∗ ; x = xK∗ − xK∗∗ .

xK∗∗ = x . So, 2x = xK∗ . Add the two

2x = xK − xK∗∗ .

3x = xK .

Hence, x ∈ K .


