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e Let K be aconeinR”

Let A be an n x n nilpotent matrix.

Let AK C K. Then, Ax = px for some x € K.
Proof.

Let0# x € K.

If Ax = 0, then we are done

Then there exists r > 1 a positive integer such that
y =A""x#0 and A'x =0.
So, A(y) = 0.

0+#yceK.

The proof is complete.



e Let Abe an n x n real matrix.

e Ais not necessarily diagonalizable.
e AK C K.

e K C R"is a proper cone.

Now we show that there exists x € R” such that
Ax=px, x#0, xe K

where p is the spectral radius of A.



Consider this simple case:

Ax' = ) x!

Ax? = x' + \x?

Ax® = M\gx3

Ax" = \px".
x',x2,...,x"is a Jordan basis for C".

M =pandp>|\| Vi>2.



e For x € C", define

A(x) == Ax' + iAX".

e Let K := K + iK be defined as before.

e We can find y € int(K) such that
y=a1x' +apx?+ ...+ apx".

where each «; # 0.



Ax' = \x!.

Ax? = A(X?) + iA(x?")
= A(X® +ix?")
= Ax?

= x4+ \x?

Ax' = x" i=3,...,n



We now have

Ax' = A\ x'

A 2 = X1 + A X2

Ax® = \3x°

Ax" = Apx".
x',x?,...,x"is a Jordan basis for C".

A =pandp>|\| Vi>2.



Computing A2x2:

A2x% = A(Ax?)
= Ax" + N\ Ax?
= A(x' + \x?)
= MxT 4+ A (xT+ Ax?)
= MxT 4+ AxT 2242
=2 1 x" + \2x2.
In general for every positive integer r,

A'x® = AT 4 X2



y !
a1 X
—i—Ongz + +
O[an.

Ar
A'(y) = ar\jx' + >
az(PAT x + A x?) + 3
X!
= J (5)

Jm K2 = S0
Put g = 222 p a
AT
Now 8x' € K

Clearly 5 #0



A(Bx") = BA(X")

= BAx]
Suppose )\ is not positive.
Now use the fact:
There exist ¢y, ¢, ..., ¢p > 0 such that

Co+Cih + CMF +... + N = 0.



Now,
Coy +CiMy + ey +...+cpM\y =0.
Coy + C1AYy + CoA2y + ... + cpAPy = 0.

AsycK, o
cAye K Vi>0.

So, y = 0.



Now, Ax' = px' and x' € K.

This gives

1" 1"
Ax" = px'" and Ax"" = px!".

Both x'" and x'” belong to K.
Simultaneously both the vectors cannot be zero.

This completes the proof.



A more general case:
Ax' = \x!
Ax® = x4+ x?
Ax® = x2 4+ A x°

Axl = xk=1 4 /\1xk

1

Ay' = Ny
Ay? = \zy?
Ay® = \ey®.

[A1] > [\ forallj>2.



Here we have assumed that

Ais similar to J, where

J =diag(J1(M\), A2, ..., As)s

where J; is of order k x kand k + s = n.

e In the previous case, we had k = 2.



Already we have seen that

ATx2 = I\ 1 NRR

A2x® = Ax® + \AX®
= X"+ Mx2 + A (X% 4+ A x3)
= x" 4 20x% + 223,
Co-efficient: (1,2,1)

A3x3 = A3x3 +303x2 4+ 3 x".
Co-efficient: (1,3, 3)



Atx* = 13 4+ 403X 603X,
Co-efficient: (1,4C¢,4C»).
In general:
A'x3 = NIx® 4 rCi N[ TX2 + rCoN 72X

In general

A’ xK = N xKrCy )\qqx"*1 —s—ng)\q_ka*z—ir. .+ rCy_1 )\q_k+1x1 .



Let y € int K be such that

y=aix' +aax®+ -+ X+ gy +oniay? 4+ sy’

where each «; # 0.
A’(y) = a1/2\’x1 + ()ég/z\rx2 +---+ OékAer
_|_
a1 ATY g sATYS



lim Ar(er}1/|)\1!r) = aydx’
axdx' # 0 and it is a point in K.
Put w := axdx'. w e K.
w is an eigenvector of A.
Eigenvalue corresponding to w is Ag.
If Ak is not positive, then we get a contradiction using (x).
Now the proof is complete.



A more general case:

A is similar to a Jordan matrix of the form:

diag(J,\”J)\z,...,JAy, ,1,...,)\,3),

where

M= el == ] >N > >0

Jy, has order k;;

Ki+ko+...+k +s=n.



Assume that y
AxBT = N x!1

Ax12 = x11 4 A x12
Ax21 = Apx? 1
Ax22 = 21 4 \px22

Ax5 = Xsx®

Ax" = \x".



Put x' = x"" and y' = x'2.
Put x2 = x?2 and y? = x2

Now y y
Ax' = Mx', Ayt = xT+ 0!

Ax? = \ox2, Ay? = X% + \py?
Ax' = x' (i=5:n).
Already we have seen that,

ATyt = Nyt oo N



Let y € K be such that
n .
y = Oé1X1 + a1/y1 + 042X2 + Oézryz + Z Oé,'XI,
i=5
where each «; # 0. Clearly

~ y
A
(rC1 pr

) = agx! + apx®.

Put u = a1x' + apx®.
u is a non-zero vector in K.

Important observation: It is a linear combination of x' and x2.
These are eigenvectors.



If X\ is not positive, then we can show that x' ¢ +K. In this
case the theorem will then be true.

Suppose both Ay and X, are positive.
So, A\ = 2 =p.

Let u:=ax' + 8x2 c K.

Now Au = pu.

This proves the result.



Let A be similar to the following matrix:

diag(Jr, .-, Do Jugs -5 Jug)

Here (M| = [Xo| = ... = [A| > [u1] = |p2| = ... > |us]
Let the order of J\, be (/).

Let the order of J,,, be g(i).

So, f(1)+f(2)+---+f(k)+9(1)+---+9(s) =n.



Ax = \x
Ax?H = M 4 Ax?
Ax3i = x20 4\ 3
Axf)i — y (D=1 )VXf(i)J.
;\yui _ Myhi.
Ay2i =yl g2
Ay = 2l oy

Ay9ii — =10 4,900



Assume that
f1)=f2)=---=1f(v)=(n say) v<k.

Jordan basis:

Define ‘ , -
Sf(,') = {X1”,X2’I, cey Xf(l)’l}

Sg(i) = {y1,i’y2,i’ s )yg(i)’i}

UIC1 Sty U U1 Sg(i)

is a basis for C".



We can find a vector y < int(K) such that

(1) 2) (k)
y=>Y ainx" + ) aipx? + +Za, kXK
i= i=

+
g(1)

9(s)
Zﬁ, A ZB oY Pt Y Bisy"S,
i=1

where «;; # 0 and g;; # 0 for all /, .

Aer,/ — )\’(Xk,/ + I’C1 )\1(71Xk,1—1 + rCZ)\I(fZXk,I—Z

erf‘] )\/(—k+1 Xk,1



rC, is a polynomial in r. Its degree is .
Compute the limit

k,i
lim A"(

= §;xk1
r=09 er_wf) ’

i1
lim A'(X—)=o0.

r—o0 rC77 o

; Yy
lim A" =z
r—oo (rCnpr)
where z is a linear combination of x', x'2 ... x'¥.

Each one of them is an eigenvector.
Now Apply Lemma (x) to complete the proof.



