Perron’s Theorem

November 17, 2018



Perron’s theorem is about square matrices in which all entries
are positive real numbers.

Such matrices will be called positive matrices.
Proved by Oskar Perron - 1907.
Further extended by Frobenius -1912.



We use the following notation:

If Ais an n x n matrix, then the jjth entry will be denoted by

a,-,-.

We will write A = [ay].
A will be called a positive if a; > 0 for all /, .

We shall write
A>0 <= Aispositive.



A will be called non-negative if a; > 0 for all /, /.

We shall write

A>0 <= Aisnon-negative.

Positive matrices are non-negative matrices.

o o]

is non-negative but not positive.



Let A be an n x nreal matrix.
f(x) := det(x/ — A) is called the characteristic polynomial of A.

f is monic. (Meaning: Coefficient of x"” = 1)

deg(f) = n.
There exist \1,..., A\p € C such that f()\;) = 0.
There exist non-zero vectors x', ..., x" in C" such that

Ax' = \x.

A; are eigenvalues of A.
x' are eigenvectors of A.



Define

p(A) == max{|\|,...,|An|}-
p(A) is called the spectral radius of A.
Note: p(A) > 0.
If Ais non-zero, can we say that p(A) > 07
Find 2 x 2 matrices such that:
Spectral radius is an eigenvalue.

Spectral radius is not an eigenvalue.



We will say that a vectorx in R" is positive if all the components
are positive.

Similarly, we have non-negative vectors.

For example, (1,2,8) € R? is a positive vector whereas (1,2, 0)
is not positive.

(1,2,—1) is not a non-negative vector.

Vectors in R will be regarded as row/column vectors
depending on the context.

What is the meaning for Some vector is not non-negative?



Theorem (Perron)
Let A> 0. Then,

(i) p(A) is an eigenvalue of A.
(ii) There exists y > 0 such that

Ay =p(Aly y>0.

(iii) Geometric multipilcity of p(A) is 1.

(iv) Suppose Ax = \x for some x > 0. Then, x and y are
linearly dependent.

(v) If Av = A\v for some v > 0, then A = p(A).



Example: Consider the following n x n matrix.

11 1
11 1

A= _
11 1

e Verify Perron’s theorem.



To prove Perron’s theorem, we need some tools.

First, we need to measure the distance between any two
elements in R".

o Take x = (X1,...,Xp)and y = (y1,...,yn) in R".

e |[x — y|| will be the notation used to denote the distance
between x and y.

e || x|| is the distance between x and the origin.

eDefinition: ||x|| := /X2 + X5 + - + X2.



If we know how to calculate the distance, then we can define
the convergence of a sequence in R".

Consider a sequence of vectors {x',x?,x3...}in R".
. . k
Write the sequence: {x"}° ;.

We say that
lim x*
k—oo

if for each ¢ > 0, there exists a positive integer M such that

=p

k>M = |xK—p|<e

eShow that the sequence {(1,0),(—1,0),(1,0),... } is not
convergent.



Closed sets in R":
A set F C R"is called closed if any convergent sequence {x™}
in F satisfies the following:

im x"=x = xecF.
m—o0

Examples:
R” is a closed set in R".
R, is not closed. Why?



e BOUNDED SETS.
A set E in R" is bounded if there exists K > 0 such that

xe E= x| <K.

e COMPACT SETS

A set K in R" is said to be compact iff K is closed and bounded.
Unbounded sets: Sets that are not bounded.

e Show that

n
A={xeR": x>0, > x<1}
i—1

is compact.



E :=(0,1) x [0, 1] is not closed in R2.
{(1/m,;1/2)}>_, is a sequence in E.

Limit of this sequence is the vector (0,1/2).
But this is not a point in E.

E:={(y1,y2) €R?:y; >0, y» >0} is closed but not
compact.

{(n,n) : n € N} is an unbounded sequence in E.



Convex sets
Let S be a closed set in R”. It is called convex iff

X+Yy

xes, yeS = e S.

o Let
A= {(x1,x2) €R?: x2 4+ x5 < 1}.

Show that A is convex.

Vo= {(xq, %) : X2 + x2 = 1}.

is not convex.



First assertion (Proof)

First step in the proof:

Some positive number is always an eigenvalue of A, by using
the assumption that all entries of A are positive.

The proof of this will be completed by using Brouwer’s fixed
point theorem.



Theorem (Brouwer)

Let A C R" be a compact and convex set. Suppose f : A — A
is a continuous function. Then there exists x € A such that

f(x) = x.

If n =1, then the proof is easy.

Otherwise, proof is not straightforward. (One way is by using
degree theoretic techniques.)



If A > 0, then for any non-negative vector 0 = y, Ay > 0.
(Why?)

This is not true if we just assume that A > 0.
Example?

To apply Brouwer’s theorem, we need a set A which is compact
and convex and we need a continuous function f: A — A.

f must be associated to A.



Define

n
A::{XGRn:ZX,‘:1, X,‘ZO}.
i=1

Show that A is compact and convex.



e Construction of a continuous self-map.
We are given an n x n matrix A such that A > 0.

For x € A, let g(x) be defined by

a(x) = (Ax)1 + (AX)2 + ...+ (AX)n.

(Ax); > 0 for all i.
g(x) #0forall x € A.



If A> 0, and if g is as above, then g(p) may be 0 for some p.
For example, consider

0 1
A_[O 0]_
Put e; = (1,0)T.
Then, Ae; = 0.
e € A.

Ae; =0 = (Aey)1 + (Aer)2 =0.
So, g(ey) = 0.



Define f: A — R" by

e f is continuous.

Each f(x); > 0.
So, x e A= f(x)eA.
Hence, f: A — A.



We can apply Brouwer’s theorem to f and conclude the
following:

There exists y € A such that

fy)=v.
But f(y) = ﬁy)Ay.
So, f(y) = y implies
Ay =g(y)y.

oy c A

e y is an eigenvector of A.

e g(y) > Ois an eigenvalue of A.
e y >0 (Why?)



To this end, we have shown the following:

Lemma

If A > 0, then there exists a positive real number § and y > 0
such that

Ay = dy.
To complete the first assertion of Perron’s theorem, we shall
prove the following claim:
Claim: 6 = p(A).
By definition, 6 < p(A).



Ay =6y, y>0, 6 >0.

Apply the above lemmato AT,
e There exists u € R" and a > 0 such that

ATu = asu.

We first show that as = 4.



uTA=asu’.
Post-multiply by y.
uTAy = asu’y.
Also,

Ay =6y, y > 0.

Since u,y >0, u'y >0.

By (1),
y (1) sy o
y=apu'y

So,

(ap —8)uTy =0.

This gives ao = 0.



So far, we have shown the following:

Lemma
Let A be an n x n positive matrix. Then, there exists 6 > 0 and
X, u € R" such that

Ax =6x, ATu=46u, x>0, u>D0.
Next step:

Claim: 6 = p(A).

We shall prove this claim.



Let x == (x1,..., %) and y := (y1,...,¥n)T) be any two
vectors in R".
We write

X>y < (x—y)>0Vi=1:n.

Equivalently,
Xi>y Vi=1:n.



We now define the following:
Given a vector x = (xy,..., Xp) in C", we define
m:C"—R"
by
m(X) = (|X1 ’7 SR |Xﬂ|)'

Note: m(x) is a non-negative vector in R".
i.e. m(x) > 0forall x € C".

For any n € C, m(nx) = |n|m(x).



Remark
Ifue C", then

Proof:

ai
a
Amu) = |

an1

Am(u) > m(Au).

m(u) = ([t1l, ..., [unl)).
a2 ... an luy |
ap ... ax Uz
an2 ann ‘Un‘



Let v := Am(u).

Vi = ayp|ur] + asa|uz| + - - + a1p|Uitn|.

Vo = a1 |Uy| + @zz|Up| 4 - - - 4 @2p|U1p].



Let w = Au.

Wy = a1y + arplz + -+ - + aplip

Wo = ap1Uq + a22Uo + -+ - + @2plip

Wn = apiUy + anal2 + - - - + apnlin.



By Triangle inequality

(Am(u))1 = vi > |ar1uy + arz2|usz + - - + arpUin|
= |w]| (2)
= [(Au)|.

Continuing this,

(Am(u)); > |(Au)i|V i.



Thus,
Am(u) — m(Au) >0 VYu e C".
Consider an eigenvalue of A.
Let Ao =pp, 0#peCn
Now,



Now use the following:
ATu=46u, u>O0.
Pre-multiply by u” in
Am(p) > |ulp.

This gives

u"Am(p) > u”|u|m(p).
Use uTA=su’.
Now,

suTm(p) > |ulu” m(p).
Note: u”m(p) > 0.
S0, § > |ul.



For any eigenvalue of y of A, we have

6 > |pl.

So, 0 > p.
Thus, § = p(A). The proof is complete.



So far, we have proved the following:
If A > 0, then there exists x € R” such that

Ax = p(A)x, x> 0.
Third assertion:
Geometric multiplicity of p(A) is one.
Meaning:
nullspace(A — p(A)l) = {x € C": Ax = p(A)x}.

To show: dim(nullspace(A) — p(A)l) = 1.



Let x, y € nullspace(A — p(A)l).
Claim: x and y are linearly dependent.
Case 1: Assume y € R". Suppose x and y are LI.

There exists o € R such that

x—ay >0, (x—ay);=0 forsome .

Because x, y are LI, x — ay # 0.
X — ayy is an eigenvector of A.

As A> 0, A(x —ay) > 0.
This is a contradiction, as for some i, (x — ay); = 0.



Case 2: Suppose
yeC", Ay =p(A)y.

Let p := realpart(y) and q := Imaginarypart(y).

Alp + ig) = p(A)p + ip(A)q.

Ap = p(A)p
Aq = p(A)q.
Apply case 1 to get:
p =d1x and q = dox.
y is a multiple of x.
Proof is complete.



We have thus shown the following:

If A > 0, then there exists x > 0 such that Ax = p(A)x. Further,
geometric multiplicity of p(A) is one.

Final assertion:
Suppose Aw = uw and w > 0.

Claim: u = p(A).
Let ATu = p(A)u, where u > 0.

wiAT = uw'.
This gives

wlATu = p(AwTu = pw'u.

So, p(A) = p.



Matrices for which spectral radius is an eigenvalue

Suppose A is symmetric.
Assume all the entries in A are positive.
Then, proving that spectral radius is an eigenvalue is easy.

(i) All eigenvalues are real.
(ii)
Amax(A) == max{xT Ax : ||x|| = 1}.

(iii) Amax(A) = p(A).



Positive definite matrices
A matrix A € R"™" s positive definite if it is symmetric and
xTAx > 0forall 0 # x € R,

A is positive definite if and only if all the eigenvalues of A are
positive.

A = B? for some B € R™",

These matrices have spectral radius as an eigenvalue. (Trivial).



Copositive matrices
Let A be an n x nmatrix. Then, A is said to be copositive if:

x>0 = x"Ax>0.

¢ Non-negative matrices are copositive matrices.
¢ Positive semidefinite matrices are copositive matrices.

e Sum of a non-negative matrix and a positive semidefinite
matrix is a copositive matrix.

¢ All symmetric copositive matrices upto order 4 can be written
asasum: N+ P

e For higher orders: Not true.



Theorem (Haynsworth and Hoffman)

Let A be an n x n symmetric matrix. Suppose A is copositive.
Then, p(A) is an eigenvalue.



Given a vector x € R”, it can be written as

x=x"—x".

xT = max(x,0) x~ = max(—x,0).

max(x,0) = (max(xy,0), max(xz,0),...,max(xp,0))
max(—x,0) = (max(—xy,0), max(—xz,0), ..., max(—xp, 0))
Consider x = (2, -3) in R?.
xt =(2,0)and x~ = (0,3).



xT and x~ are non-negative vectors.

xT and x~ are orthogonal.

Recall:
m(X) = (|X1 |7 ’X2’7 ceey ‘Xn’)
m(x) = xt +x".
If x € R”, then || x|| = ||m(x)]|.

x| =[x+ —x||?
= <X+7X+> + <X77X7> - 2<X+7X7>
2 —112
= [IXTI% + x|
= [Ix* +x7||?

= [|m(x)|I?.



Lemma
If A is symmetric and copositive, then for any vector x € R",

(Am(x), m(x)) + (Ax, x) > 0.

Our aim is to show that p(A) is an eigenvalue of A.
In otherwords, p(A) = Amax(A).

If
)\max(A) + )\min(A) > 07

then p(A) = Amax(A).



Proof.
Amax(A) = max{xTAx : ||x|| = 1}.
Amin(A) = min{xT Ax : ||x| = 1}.
Let
Amin(A) = p' Ap.

Note:
ol =1, llql =1.



(Ap, p) + (Am(p), m(p)) > 0.
—(Ap, p) < (Am(p), m(p))
< (Ag.q)
So,
(Ag,q) + (Ap,p) = 0.
This means that Amax(A) + Amin(A) > 0.
Proof is complete.



