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Theorem (Perron Frobenius for cones)
Let A be an n × n real matrix, n > 1. Suppose K ⊆ Rn is a
proper cone. Let AK ⊆ K . Then,

• There exists x ∈ Rn such that

x 6= 0, x ∈ K , and Ax = ρ(A)x .

• Furthermore, there exists y ∈ Rn such that

y 6= 0, y ∈ K ∗, Aty = ρ(A)y .



We prove the above theorem by assuming that A is
diagonalizable.



Given:

• A is an n × n real matrix.

• AK ⊆ K , where K ⊆ Rn is a proper cone.

To Prove:

• ρ(A) is an eigenvalue of A.



• A real matrix may not have real eigenvalues.

• But an n × n real matrix has n-complex eigenvalues.

Before we start the proof, we shall see the above statements in
detail.



Put
V := Rn + iRn.

If x ∈ Cn (i.e. x ∈ V ) then write

Real part(x) by x ′

and
Imag. part(x) by x ′′.



Define
Ã : V → V

by
Ã(x) = A(x ′) + iA(x

′′
).

Show that for any vector y ∈ Cn,

Ãy = Ay .

Ã is a complex matrix.

Any n × n complex matrix has n-eigenvalues.

These numbers are the eigenvalues of A.



A is the given matrix.

We consider Ã.

Define K̃ := K + iK .

• int(K̃ ) = int(K ) + i int(K ).

• Note:

Ã(K̃ ) = A(K ) + iA(K )

⊆ K + iK

= K̃ .

(1)



• Let x , y ∈ K̃ . Then, x + y ∈ K̃ .

• If x ∈ K̃ and if α ≥ 0, then αx ∈ K̃ .

Let x ∈ K̃ and −x ∈ K̃ . Then, x = 0.

This means that K̃ is closed, convex and pointed.



Claim: Ã2x = A2x ′ + iA2x ′′.

ÃÃ(x) = Ã(A(x ′ + iAx ′′).

Let y := Ax ′ + iAx ′′.

Then, y ′ = Ax ′ and y ′′ = Ax ′′.

Ãy = Ay ′ + iAy ′′.

Ay ′ = A2x ′ and Ay ′′ = A2x
′′
.

So, Ã2x = A2x ′ + iA2x ′′.



For any positive integer r , we have

Ãr x = Ar x ′ + iAr x ′′.

Now

Ãr (K̃ ) = Ar K + iAr (K )

⊆ K + iK

= K̃ .

(2)



A is diagonalizable.

This means that there exists a basis for Cn, say, {x1, x2, . . . , xn}
such that

Ã(x1) = λ1x1,

Ã(x2) = λ2x2

...

Ã(xn) = λnxn.



To this end, we have the following:

• Ã : Cn → Cn is a linear map.

• K̃ is a proper cone in V .

• ÃK̃ ⊆ K̃ , Ã2K̃ ⊆ K̃ , Ã3K̃ ⊆ K̃ ,. . .

• There exists λ1, λ2, . . . , λn ∈ C and a basis {x1, . . . , xn} for Cn

such that
Ãx i = λix i .



We now claim the following:

Lemma
There exists y ∈ int(K̃ ) such that

y = α1x1 + α2x2 + · · ·+ αnxn,

where αi 6= 0 for all i .
Proof:

int(K ) 6= ∅.

Let v ∈ int(K̃ ).

v must be a linear combination of x1, . . . , xn.

Let β1, β2, . . . , βn ∈ C be such that

v = β1x1 + β2x2 + . . .+ βnxn.



If the lemma is not true, then some βi = 0.

WLOG, let β1, β2, . . . , βk = 0.

So,
v = βk+1xk+1 + · · ·+ βnxn.

Let w := x1 + · · ·+ xk .

v ∈ int(K̃ ) ⇒ v + εw ∈ int(K̃ ) for some ε > 0.

Put x = v + εw .

Now, x ∈ int(K̃ ) is the desired vector.

Proof of the lemma is complete.



First we shall see how to complete the proof of the main
theorem in the simplest possible case.

Suppose the eigenvalues λi satisfy the following property:

|λ1| = ρ, |λ1| > |λi | ∀i .

Recall:
Ãx i = λix i .

So, for all r = 1,2, . . . ,

Ãr x i = λr
i x

i .



Let y ∈ int(K̃ ) be such that

y = α1x1 + α2x2 + . . .+ αnxn,

where each αi 6= 0.

We know that such a vector exists (Why?).

Compute Ãr y .

Ãr y = α1λ
r
1x1 + α2λ

r
2x2 + . . .+ λr

nxn.



Now compute the limit of the sequence:

{Ãr (
y
ρr )}

∞
r=1

Consider the sequences

{(λi

ρ
)r}∞r=1.

These sequences are bounded.

Can we say that these sequences are convergent? (Why?)



To proceed further, we need the following theorem

Theorem (Bolzano Weirstrass)
Let {xm} be a bounded sequence in Rn or Cn. Then, some
subsequence of {xm} is convergent.

Example

Consider the sequence {(in,1)}.

Then find a subsequence that is convergent.



WLOG, we can assume that

{(λi

ρ
)r}∞r=1.

are convergent sequences.

If i ≥ 2, then these sequences converge to 0.

Let

δ = lim
r→∞

λr
1
ρr .

It is easy to see that

lim
r→∞

Ãr (
y
ρr ) = α1δx1.



|
λr

1
ρr | = 1 ∀r ⇒ |δ| = 1.

α1 6= 0 (Since each αi 6= 0).

So,
α1δ 6= 0.



Put u := α1δx1.

Now we know that
u 6= 0.

Claim: u ∈ K̃ .

We have y
ρr ∈ int(K̃ ),

and

Ãr (K̃ ) ⊆ K̃ ∀ r .



So,
Ãr (

y
ρ

r
) ∈ K̃ ∀ r .

• u := α1δx1 is a limit point of K̃ .

So, u is an element of K̃ .



Ã(u) = λ1u.

(Proof: A(u) = A(α1δx1) = α1δA(x1) = α1δλ1x1 = λ1u .)

Suppose λ1 is a + ib. where b 6= 0 or λ1 ≤ 0.

Then there exist γ0, γ1, . . . , γp > 0 such that

γ0 + γ1λ1 + γ2λ
2
1 + . . .+ γpλ

p
1 = 0.



So,
γ0u + γ1λ1u + γ2λ

2
1u + . . .+ γpλ

p
1u = 0. (3)

• Ãiu = λi
1u.

Also, u ∈ K̃ .

So, Ãi(u) ∈ K̃ .

Each γi > 0.

Equation (3) is the following:

γ0u + γ1Ãu + γ2Ã2u + . . .+ γpÃiu = 0.
Note:

γ0u ∈ K̃ , γ1Ãu ∈ K̃ , . . . , γpÃiu ∈ K̃



Thus, u = 0.

This is a contradiction since u is non-zero.

So, λ1 > 0.

Thus, λ1 = ρ.

Now Ãu = ρu.

We claim that Ax = ρx for some 0 6= x ∈ K .



To this end,
Ãu = ρu, 0 6= u ∈ K̃ .

u = u
′
+ iu

′′
.

Now u
′ ∈ K and u

′′ ∈ K .

Ã(u) = A(u′) + iA(u′′)
= A(u′ + iu′′)

= ρ(u′ + iu
′′
).

(4)

Equating real and imaginary parts,

Au′ = ρu′ and Au
′′
= ρ(u

′′
).

Both u′ and u
′′

cannot be zero simultaneously.

The proof is complete.



Now consider the general case:

A is diagonalizable

Eigenvalues of A are:

|λ1| = |λ2| = . . . = |λk | > |µ1| ≥ |µ2| ≥ . . . |µs|.

Recall: Ã : V → V is defined by

Ã(x + iy) = Ax + iAy .



Let Ãx i = λix i for all i = 1 : k

Let Ãv i = µiv i for all i = 1 : s.

CLAIM: There exists a non-trivial linear combination of
x1, x2, . . . , xk belonging to K̃ .



Let y ∈ K̃ be such that

y = α1x1 + . . .+ αkxk + β1v1 + . . .+ βsvs,

where each αi 6= 0.

Apply Ãr on both the sides.

Divide by ρ.



lim
r→∞

Ãr (
y
ρr ) = δ1α1x1 + δ2x2 + . . .+ αkδkxk .

Here each |δi | = 1.

RHS 6= 0.

K̃ is closed in V .



y
ρr ∈ K̃ ∀r .

⇒ Ãr (
y
ρr ) ⊆ K̃ ∀r .

⇒ u := δ1α1x1 + δ2x2 + . . .+ αkδkxk

is a limit point of K̃ .



We now have the following claim:

CLAIM:
Suppose λj = a + ib, where b 6= 0. Then,

span{x1, x2, . . . , x i−1, x i+1, . . . , xn} ∩ K 6= {0}.

Proof of the claim



WLOG, λj = λk .

Then there exist c0, c1, c2, . . . , cp > 0 such that

c0 + c1λk + c2λ
2
k + . . .+ cpλ

p
k = 0.

u = δ1α1x1 + δ2x2 + . . .+ αkδkxk ∈ K̃ .

Define βi := αiδi .



Then,
u = β1x1 + β2x2 + . . .+ βkxk .

Now consider the vector

x̃ := βk (c0xk + c1λkxk + c2λ
2
kxk + . . .+ cpλ

p
kxk )(This is 0)

+

β1(c0x1 + c1λ1x1 + c2λ
2
1x1 + . . .+ cpλ

p
1x1)

+

...

+

βk−1(c0xk−1 + c1λ1xk−1 + c2λ
2
1xk−1 + . . .+ cpλ

p
1xk−1).



Note:

x̃ is a linear combination of x1, x2, . . . , xk−1.

We will now prove that

• x̃ ∈ K̃ .

To do this

•We compute the coefficients c0, c1, . . . , cp of x̃ explicitly.



The coefficient of c0 in x̃ :

k∑
i=1

βix i

which is u.

The coefficient of c1 in x̃ :

k∑
i=1

λiβix i .

But Ax i = λix i .



So,
k∑

i=1

λiβix i =
k∑

i=1

βiAx i .

=
k∑

i=1

A(βix i).

= Au.

(5)

Co-efficient of c2 in x̃ :
k∑

i=1

λ2
i βix i .

This is A2u.



To sum up:
x̃ := c0u + c1Ãu + . . .+ cpÃpu.

u ∈ K̃

and so,
Ãr (u) ∈ K̃ ∀r .

All ci > 0.

So, x̃ ∈ K̃ .

Also, note that x̃ is not zero. (Why?)



We already know the following:

• x̃ is a linear combination of x1, . . . , xk−1.

To summarize:

If λk is not positive, then we can find a vector x̃ satisfying the
following properties:

1. x̃ is a linear combination of x1, . . . , xk−1.
2. x̃ ∈ K̃ .
3. x̃ 6= 0.



Suppose all of the following are not positive:

λ2, λ3, . . . , λk .

Apply the previous argument and conclude that

x1 ∈ K̃ .

If λ1 is not positive, then there exist γ0, γ1, . . . , γp > 0 such that

γ0 + γ1λ1 + γ2λ
2
1 + . . .+ γpλ

p
1 = 0.



γ0x1 + γ1λ1x1 + γ2λ
2
1x1 + . . .+ γpλ

p
1x1 = 0.

This equation is same as:

γ0x1 + γ1Ãx1 + γ2Ã2x1 + . . .+ γpÃr x1 = 0.

γ0x1 ∈ K̃ , γj Ãjx j ∈ K̃ .

So, x1 = 0 which is not possible.

So, Ãx1 = ρx1.



Some of the following are positive and non-positive:

λ1, λ2, . . . , λk .

WLOG, let λ1, . . . , λm be positive and the remaining be
non-positive.

We can find a vector x̃ such that
1. x̃ is a linear combination of x1, . . . , xm.
2. x̃ ∈ K̃ .
3. x̃ 6= 0.

In this case,
λ1 = λ2 = . . . = λm = ρ



Let
x̃ = η1x1 + η2x2 + . . .+ ηmxm.

Ãx̃ = η1Ax1 + η2Ax2 + . . .+ ηmAxm.

Ãx̃ = η1λ1x1 + η2λ2x2 + . . .+ ηmλmxm

= ρ(η1x1 + η2x2 + . . .+ ηmxm)

= ρx̃ .

(6)



To this end, we have shown that

Ãu = ρu for some 0 6= u in K̃ .

Now
Ã(u) = Au′ + iAu′′

= ρu
= ρ(u′ + iu′′).

(7)

Au′ = ρu′ and Au′′ = ρu′′.

u′ ∈ K and u′′ ∈ K .

Both of them cannot be zero.

This proves the theorem.



Note that we have proved the following lemma:

Lemma (*)
Suppose Ã is n × n. Let x1, . . . , xk ∈ Cn be eigenvectors in K̃ .
Let

Ãx i = λix i (i = 1 : k).

Then at least one λi > 0. If some λj is complex or negative real
number, then there exists v ∈ K̃ such that v is a linear
combination of x1, x2, . . . , x j−1, x j+1, . . . , xk .



Definition
Let K ⊆ Rn be a proper cone. We say that A is K -positive if

x ∈ K \ {0} ⇒ Ax ∈ int(K ).

Theorem
Suppose A is K -positive. Then the following items hold:

1.
Ax = λx , 0 6= x ∈ K ⇒ x ∈ int(K ).

2. If Ax = λ1x , and Ay = λ2y and x , y ∈ K , then x = αy for
some α.



Proof:

Let Ax = λx where x ∈ ∂K . Then y∗Ax = 0 for some
0 6= y ∈ K .

However this contradicts that Ax ∈ int(K ).

This proves 1.



To prove 2, we proceed as follows:

By 1, x , y ∈ int(K ).

But this will imply that A has a eigenvector in the boundary of
the cone K .

Again apply 1 and get a contradiction.


