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• Let K be a cone in Rn

Let A be an n × n nilpotent matrix.

Let AK ⊆ K . Then, Ax = ρx for some x ∈ K .

Proof.
Let 0 6= x ∈ K .

If Ax = 0, then we are done

Then there exists r > 1 a positive integer such that

y := Ar−1x 6= 0 and Ar x = 0.

So, A(y) = 0.

0 6= y ∈ K .

The proof is complete.



• Let A be an n × n real matrix.

• A is not necessarily diagonalizable.

• AK ⊆ K .

• K ⊆ Rn is a proper cone.

Now we show that there exists x ∈ Rn such that

Ax = ρx , x 6= 0, x ∈ K

where ρ is the spectral radius of A.



Consider this simple case:

Ax1 = λ1x1

Ax2 = x1 + λ1x2

Ax3 = λ3x3

...
Axn = λnxn.

(1)

x1, x2, . . . , xn is a Jordan basis for Cn.

λ1 = ρ and ρ > |λi | ∀i ≥ 2.



• For x ∈ Cn, define

Ã(x) := Ax ′ + iAx ′′.

• Let K̃ := K + iK be defined as before.

•We can find y ∈ int(K̃ ) such that

y = α1x1 + α2x2 + . . .+ αnxn.

where each αi 6= 0.



Ãx1 = λ1x1.

Ãx2 = A(x2′
) + iA(x2′′

)

= A(x2′
+ ix2′′

)

= Ax2

= x1 + λ1x2

(2)

Ãx i = λix i i = 3, . . . ,n.



We now have
Ãx1 = λ1x1

Ãx2 = x1 + λ1x2

Ãx3 = λ3x3

...

Ãxn = λnxn.

(3)

x1, x2, . . . , xn is a Jordan basis for Cn.

λ1 = ρ and ρ > |λi | ∀i ≥ 2.



Computing Ã2x2:

Ã2x2 = Ã(Ãx2)

= Ãx1 + λ1Ãx2

= Ã(x1 + λ1x2)

= λ1x1 + λ1(x1 + λ1x2)

= λ1x1 + λ1x1 + λ2
1x2

= 2λ1x1 + λ2
1x2.

(4)

In general for every positive integer r ,

Ãr x2 = rλr−1
1 x1 + λr

1x2.



y = α1x1 + α2x2 + . . .+ αnxn.

Ãr (y) = α1λ
r
1x1 + α2(rλr−1

1 x1 + λr
1x2) +

n∑
j=3

λr
j x

j (5)

lim
r→∞

Ãr (
y

rρr ) =
α2δ

λ1
x1

Put β = α2δ
λ1

.

Now βx1 ∈ K̃ .

Clearly β 6= 0.



Ã(βx1) = βÃ(x1)

= βλ1x1
(6)

Suppose λ1 is not positive.

Now use the fact:

There exist c0, c1, . . . , cp > 0 such that

c0 + c1λ1 + c2λ
2
1 + . . .+ cpλ

p
1 = 0.



Now,
c0y + c1λ1y + c2λ

2
1y + . . .+ cpλ

p
1y = 0.

c0y + c1Ãy + c2Ã2y + . . .+ cpÃpy = 0.

As y ∈ K̃ ,
ci Ãiy ∈ K̃ ∀i ≥ 0.

So, y = 0.



Now, Ãx1 = ρx1 and x1 ∈ K̃ .

This gives

Ax1′
= ρx1′

and Ax1′′
= ρx1′′

.

Both x1′
and x1′′

belong to K .

Simultaneously both the vectors cannot be zero.

This completes the proof.



A more general case:

Ãx1 = λ1x1

Ãx2 = x1 + λ1x2

Ãx3 = x2 + λ1x3

...

Ãxk = xk−1 + λ1xk

Ãy1 = λ2y1

Ãy2 = λ3y2

...

Ãys = λsys.

|λ1| > |λj | for all j ≥ 2.



Here we have assumed that

A is similar to J, where

J = diag(J1(λ1), λ2, . . . , λs),

where J1 is of order k × k and k + s = n.

• In the previous case, we had k = 2.



Already we have seen that

Ãr x2 = rλr−1
1 x1 + λr

1x2.

Ã2x3 = Ãx2 + λ1Ãx3

= x1 + λ1x2 + λ1(x2 + λ1x3)

= x1 + 2λ1x2 + λ2
1x3.

(7)

Co-efficient: (1,2,1)

Ã3x3 = λ3
1x3 + 3λ2

1x2 + 3λ1x1.

Co-efficient: (1,3,3)



Ã4x4 = λ4
1x3 + 4λ3

1x2 + 6λ2
1x1.

Co-efficient: (1,4C1,4C2).
In general:

Ãr x3 = λr
1x3 + rC1λ

r−1
1 x2 + rC2λ

r−2
1 x1.

In general

Ãr xk = λr
1xk+rC1λ

r−1
1 xk−1+rC2λ

r−2
1 xk−2+. . .+rCk−1λ

r−k+1
1 x1.



Let y ∈ int K̃ be such that

y = α1x1 +α2x2 + · · ·+αkxk +αk+1y1 +αk+2y2 + · · ·+αk+sys.

where each αi 6= 0.

Ãr (y) = α1Ãr x1 + α2Ãr x2 + · · ·+ αk Ãr xk

+

αk+1Ãr y1 + . . .+ αk+sÃr ys.



lim
r→∞

Ãr (
y

rCk−1|λ1|r
) = αkδx1

αkδx1 6= 0 and it is a point in K̃ .

Put w := αkδx1. w ∈ K̃ .

w is an eigenvector of Ã.

Eigenvalue corresponding to w is λk .

If λk is not positive, then we get a contradiction using (∗).

Now the proof is complete.



A more general case:

A is similar to a Jordan matrix of the form:

diag(Jλ1 , Jλ2 , . . . , Jλν , λ
′
1, . . . , λ

′
s),

where

|λ1| = |λ2| = . . . = |λν | > λ′1 > λ′2 > . . . λ′s;

Jλi has order ki ;

k1 + k2 + . . .+ kν + s = n.



Assume that
Ãx1,1 = λ1x1,1

Ãx1,2 = x1,1 + λ1x1,2

Ãx2,1 = λ2x2,1

Ãx2,2 = x2,1 + λ2x2,2

Ãx5 = λ5x5

...

Ãxn = λnxn.



Put x1 = x1,1 and y1 = x1,2.

Put x2 = x2,2 and y2 = x2,2

Now
Ãx1 = λ1x1, Ãy1 = x1 + λ1y1

Ãx2 = λ2x2, Ãy2 = x2 + λ2y2

Ãx i = λix i (i = 5 : n).

Already we have seen that,

Ãr y1 = λr
1y1 + rC1λ

r−1
1 x1.



Let y ∈ K̃ be such that

y = α1x1 + α1′y1 + α2x2 + α2′y2 +
n∑

i=5

αix i ,

where each αi 6= 0. Clearly

Ãr (
y

rC1ρr )→ α1x1 + α2x2.

Put u = α1x1 + α2x2.

u is a non-zero vector in K̃ .

Important observation: It is a linear combination of x1 and x2.
These are eigenvectors.



If λ2 is not positive, then we can show that x1 ∈ ±K̃ . In this
case the theorem will then be true.

Suppose both λ1 and λ2 are positive.

So, λ1 = λ2 = ρ.

Let u := αx1 + βx2 ∈ K̃ .

Now Ãu = ρu.

This proves the result.



Let A be similar to the following matrix:

diag(Jλ1 , . . . , Jλk , Jµ1 , . . . , Jµs)

Here |λ1| = |λ2| = . . . = |λk | > |µ1| ≥ |µ2| ≥ . . . ≥ |µs|

Let the order of Jλi be f (i).

Let the order of Jµi be g(i).

So, f (1) + f (2) + · · ·+ f (k) + g(1) + · · ·+ g(s) = n.



Ãx1,i = λix1,i .

Ãx2,i = x1,i + λix2,i

Ãx3,i = x2,i + λix3,i

...

Ãx f (i),i = x f (i)−1,i + λix f (i),i .

(i = 1 : k)
Ãy1,i = µiy1,i .

Ãy2,i = y1,i + µiy2,i

Ãy3,i = y2,i + µiy3,i

...

Ãyg(i),i = y f (i)−1,i + µiyg(i),i .

i = 1 : s



Assume that

f (1) = f (2) = · · · = f (ν) = (η say) ν ≤ k .

Jordan basis:

Define
Sf (i) := {x1,i , x2,i , . . . , x f (i),i}

Sg(i) := {y1,i , y2,i , . . . , yg(i),i}

∪k
i=1Sf (i) ∪ ∪s

i=1Sg(i)

is a basis for Cn.



We can find a vector y ∈ int(K̃ ) such that

y =

f (1)∑
i=1

αi,1x i,1 +

f (2)∑
i=1

αi,2x i,2 + · · ·+
f (k)∑
i=1

αi,kx i,k

+

g(1)∑
i=1

βi,1y i,1 +

g(2)∑
i=1

βi,2y i,2 + · · ·+
g(s)∑
i=1

βi,sy i,s,

where αi,j 6= 0 and βi,j 6= 0 for all i , j .

Ãr xk ,i = λr
i x

k ,i + rC1λ
r−1
i xk ,i−1 + rC2λ

r−2
i xk ,i−2

+ · · ·+

rCk−1λ
r−k+1
i xk ,1



rCη is a polynomial in r . Its degree is η.

Compute the limit

lim
r→∞

Ar (
xk ,i

rCk−1ρr ) = δixk ,1

lim
r→∞

Ar (
y i,1

rCηρr ) = 0.

lim
r→∞

Ar (
y

rCηρr ) = z

where z is a linear combination of x1,1, x1,2, . . . , x1,ν .

Each one of them is an eigenvector.

Now Apply Lemma (∗) to complete the proof.


