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Perron’s theorem is about square matrices in which all entries
are positive real numbers.

Such matrices will be called positive matrices.

Proved by Oskar Perron - 1907.

Further extended by Frobenius -1912.



We use the following notation:

If A is an n × n matrix, then the ij th entry will be denoted by

aij .

We will write A = [aij ].

A will be called a positive if aij > 0 for all i , j .

We shall write
A > 0 ⇐⇒ A is positive.



A will be called non-negative if aij ≥ 0 for all i , j .

We shall write

A ≥ 0 ⇐⇒ A is non-negative.

Positive matrices are non-negative matrices.

[
0 1
0 0

]
is non-negative but not positive.



Let A be an n × n real matrix.

f (x) := det(xI − A) is called the characteristic polynomial of A.

f is monic. (Meaning: Coefficient of xn = 1)

deg(f ) = n.

There exist λ1, . . . , λn ∈ C such that f (λi) = 0.

There exist non-zero vectors x1, . . . , xn in Cn such that

Ax i = λix i .

λi are eigenvalues of A.

x i are eigenvectors of A.



Define
ρ(A) := max{|λ1|, . . . , |λn|}.

ρ(A) is called the spectral radius of A.

Note: ρ(A) ≥ 0.

If A is non-zero, can we say that ρ(A) > 0?

Find 2× 2 matrices such that:

Spectral radius is an eigenvalue.

Spectral radius is not an eigenvalue.



We will say that a vectorx in Rn is positive if all the components
are positive.

Similarly, we have non-negative vectors.

For example, (1,2,8) ∈ R3 is a positive vector whereas (1,2,0)
is not positive.

(1,2,−1) is not a non-negative vector.

Vectors in Rn will be regarded as row/column vectors
depending on the context.

What is the meaning for Some vector is not non-negative?



Theorem (Perron)
Let A > 0. Then,

(i) ρ(A) is an eigenvalue of A.
(ii) There exists y > 0 such that

Ay = ρ(A)y y > 0.

(iii) Geometric multipilcity of ρ(A) is 1.
(iv) Suppose Ax = λx for some x > 0. Then, x and y are

linearly dependent.
(v) If Av = λv for some v > 0, then λ = ρ(A).



Example: Consider the following n × n matrix.

A =


1 1 · · · 1
1 1 · · · 1
...

...
...

...
1 1 · · · 1


• Verify Perron’s theorem.



To prove Perron’s theorem, we need some tools.

First, we need to measure the distance between any two
elements in Rn.

• Take x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn.

• ‖x − y‖ will be the notation used to denote the distance
between x and y .

• ‖x‖ is the distance between x and the origin.

•Definition: ‖x‖ :=
√

x2
1 + x2

2 + · · ·+ x2
n .



If we know how to calculate the distance, then we can define
the convergence of a sequence in Rn.

Consider a sequence of vectors {x1, x2, x3 . . . } in Rn.

Write the sequence: {xk}∞k=1.

We say that
lim

k→∞
xk = p

if for each ε > 0, there exists a positive integer M such that

k ≥ M ⇒ ‖xk − p‖ < ε

•Show that the sequence {(1,0), (−1,0), (1,0), . . . } is not
convergent.



Closed sets in Rn:

A set F ⊆ Rn is called closed if any convergent sequence {xm}
in F satisfies the following:

lim
m→∞

xm = x ⇒ x ∈ F .

Examples:

Rn
+ is a closed set in Rn.

Rn
++ is not closed. Why?



• BOUNDED SETS.

A set E in Rn is bounded if there exists K > 0 such that

x ∈ E ⇒ ‖x‖ ≤ K .

• COMPACT SETS

A set K in Rn is said to be compact iff K is closed and bounded.

Unbounded sets: Sets that are not bounded.

• Show that

∆ := {x ∈ Rn : x ≥ 0,
n∑

i=1

xi ≤ 1}

is compact.



E := (0,1)× [0,1] is not closed in R2.

{(1/m,1/2)}∞m=1 is a sequence in E .

Limit of this sequence is the vector (0,1/2).

But this is not a point in E .

E := {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0} is closed but not
compact.

{(n,n) : n ∈ N} is an unbounded sequence in E .



Convex sets

Let S be a closed set in Rn. It is called convex iff

x ∈ S, y ∈ S ⇒ x + y
2
∈ S.

• Let
∆ := {(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1}.

Show that ∆ is convex.

•
∇ := {(x1, x2) : x2

! + x2
2 = 1}.

is not convex.



First assertion (Proof)

First step in the proof:

Some positive number is always an eigenvalue of A, by using
the assumption that all entries of A are positive.

The proof of this will be completed by using Brouwer’s fixed
point theorem.



Theorem (Brouwer)
Let ∆ ⊆ Rn be a compact and convex set. Suppose f : ∆→ ∆
is a continuous function. Then there exists x ∈ ∆ such that

f (x) = x .

If n = 1, then the proof is easy.

Otherwise, proof is not straightforward. (One way is by using
degree theoretic techniques.)



If A > 0, then for any non-negative vector 0 6= y , Ay > 0.
(Why?)

This is not true if we just assume that A ≥ 0.

Example?

To apply Brouwer’s theorem, we need a set ∆ which is compact
and convex and we need a continuous function f : ∆→ ∆.

f must be associated to A.



Define

∆ := {x ∈ Rn :
n∑

i=1

xi = 1, xi ≥ 0}.

Show that ∆ is compact and convex.



• Construction of a continuous self-map.

We are given an n × n matrix A such that A > 0.

For x ∈ ∆, let g(x) be defined by

g(x) := (Ax)1 + (Ax)2 + . . .+ (Ax)n.

(Ax)i > 0 for all i .

g(x) 6= 0 for all x ∈ ∆.



If A ≥ 0, and if g is as above, then g(p) may be 0 for some p.
For example, consider

A =

[
0 1
0 0

]
.

Put e1 = (1,0)T .

Then, Ae1 = 0.

e1 ∈ ∆.

Ae1 = 0 ⇒ (Ae1)1 + (Ae1)2 = 0.

So, g(e1) = 0.



Define f : ∆→ Rn by

f (x) =
1

g(x)
Ax .

• f is continuous.

•
f (x)1 + f (x)2 + · · ·+ f (x)n = 1.

Each f (x)i ≥ 0.

So, x ∈ ∆⇒ f (x) ∈ ∆.

Hence, f : ∆→ ∆.



We can apply Brouwer’s theorem to f and conclude the
following:

There exists y ∈ ∆ such that

f (y) = y .

But f (y) = 1
g(y)

Ay .

So, f (y) = y implies
Ay = g(y)y .

• y ∈ ∆.

• y is an eigenvector of A.

• g(y) > 0 is an eigenvalue of A.

• y > 0 (Why?)



To this end, we have shown the following:

Lemma
If A > 0, then there exists a positive real number δ and y > 0
such that

Ay = δy .

To complete the first assertion of Perron’s theorem, we shall
prove the following claim:

Claim: δ = ρ(A).

By definition, δ ≤ ρ(A).



Ay = δy , y > 0, δ > 0.

Apply the above lemma to AT .

• There exists u ∈ Rn and α > 0 such that

AT u = α2u.

We first show that α2 = δ.



uT A = α2uT .

Post-multiply by y .
uT Ay = α2uT y . (1)

Also,
Ay = δy , y > 0.

Since u, y > 0, uT y > 0.

By (1),
uT δy = α2uT y

So,
(α2 − δ)uT y = 0.

This gives α2 = δ.



So far, we have shown the following:

Lemma
Let A be an n × n positive matrix. Then, there exists δ > 0 and
x ,u ∈ Rn such that

Ax = δx , AT u = δu, x > 0, u > 0.

Next step:

Claim: δ = ρ(A).

We shall prove this claim.



Let x := (x1, . . . , xn)T and y := (y1, . . . , yn)T ) be any two
vectors in Rn.

We write
x ≥ y ⇐⇒ (x − y)i ≥ 0 ∀i = 1 : n.

Equivalently,
xi ≥ yi ∀i = 1 : n.



We now define the following:

Given a vector x = (x1, . . . , xn) in Cn, we define

m : Cn → Rn

by
m(x) := (|x1|, . . . , |xn|).

Note: m(x) is a non-negative vector in Rn.

i.e. m(x) ≥ 0 for all x ∈ Cn.

For any η ∈ C, m(ηx) = |η|m(x).



Remark
If u ∈ Cn, then

Am(u) ≥ m(Au).

Proof:

m(u) = (|u1|, . . . , |un|)).

Am(u) =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
...

an1 an2 . . . ann



|u1|
|u2|

...
|un|

.



Let v := Am(u).

v1 = a11|u1|+ a12|u2|+ · · ·+ a1n|u1n|.

v2 = a21|u1|+ a22|u2|+ · · ·+ a2n|u1n|.
...

vn = an1|u1|+ an2|u2|+ · · ·+ ann|u1n|.



Let w = Au.

w1 = a11u1 + a12u2 + · · ·+ a1nu1n

w2 = a21u1 + a22u2 + · · ·+ a2nu1n

...

wn = an1u1 + an2u2 + · · ·+ annu1n.



By Triangle inequality

(Am(u))1 = v1 ≥ |a11u1 + a12|u12 + · · ·+ a1nu1n|
= |w1|
= |(Au)1|.

(2)

Continuing this,

(Am(u))i ≥ |(Au)i |∀ i .



Thus,
Am(u)−m(Au) ≥ 0 ∀u ∈ Cn.

Consider an eigenvalue of A.

Let Ap = µp, 0 6= p ∈ Cn.

Now,
Am(p) ≥ m(Ap)

= m(µp)

= |µ|p.



Now use the following:

AT u = δu, u > 0.

Pre-multiply by uT in

Am(p) ≥ |µ|p.

This gives
uT Am(p) ≥ uT |µ|m(p).

Use uT A = δuT .

Now,
δuT m(p) ≥ |µ|uT m(p).

Note: uT m(p) > 0.

So, δ ≥ |µ|.



For any eigenvalue of µ of A, we have

δ ≥ |µ|.

So, δ ≥ ρ.

Thus, δ = ρ(A). The proof is complete.



So far, we have proved the following:

If A > 0, then there exists x ∈ Rn such that

Ax = ρ(A)x , x > 0.

Third assertion:

Geometric multiplicity of ρ(A) is one.

Meaning:

nullspace(A− ρ(A)I) = {x ∈ Cn : Ax = ρ(A)x}.

To show: dim(nullspace(A)− ρ(A)I) = 1.



Let x , y ∈ nullspace(A− ρ(A)I).

Claim: x and y are linearly dependent.

Case 1: Assume y ∈ Rn. Suppose x and y are LI.

There exists α ∈ R such that

x − αy ≥ 0, (x − αy)i = 0 for some i .

Because x , y are LI, x − αy 6= 0.

x − αy is an eigenvector of A.

As A > 0, A(x − αy) > 0.
This is a contradiction, as for some i , (x − αy)i = 0.



Case 2: Suppose

y ∈ Cn, Ay = ρ(A)y .

Let p := realpart(y) and q := Imaginarypart(y).

A(p + iq) = ρ(A)p + iρ(A)q.

Ap = ρ(A)p

Aq = ρ(A)q.

Apply case 1 to get:
p = δ1x and q = δ2x .

y is a multiple of x .

Proof is complete.



We have thus shown the following:

If A > 0, then there exists x > 0 such that Ax = ρ(A)x . Further,
geometric multiplicity of ρ(A) is one.

Final assertion:
Suppose Aw = µw and w > 0.

Claim: µ = ρ(A).

Let AT u = ρ(A)u, where u > 0.

wT AT = µwT .

This gives
wT AT u = ρ(A)wT u = µwT u.

So, ρ(A) = µ.



Matrices for which spectral radius is an eigenvalue

Suppose A is symmetric.

Assume all the entries in A are positive.

Then, proving that spectral radius is an eigenvalue is easy.

(i) All eigenvalues are real.
(ii)

λmax (A) := max{xT Ax : ‖x‖ = 1}.

(iii) λmax (A) = ρ(A).



Positive definite matrices

A matrix A ∈ Rn×n is positive definite if it is symmetric and
xT Ax > 0 for all 0 6= x ∈ Rn.

A is positive definite if and only if all the eigenvalues of A are
positive.

A = B2 for some B ∈ Rn×n.

These matrices have spectral radius as an eigenvalue. (Trivial).



Copositive matrices

Let A be an n × n matrix. Then, A is said to be copositive if:

x ≥ 0 ⇒ xT Ax ≥ 0.

• Non-negative matrices are copositive matrices.

• Positive semidefinite matrices are copositive matrices.

• Sum of a non-negative matrix and a positive semidefinite
matrix is a copositive matrix.

• All symmetric copositive matrices upto order 4 can be written
as a sum: N + P

• For higher orders: Not true.



Theorem (Haynsworth and Hoffman)
Let A be an n × n symmetric matrix. Suppose A is copositive.
Then, ρ(A) is an eigenvalue.



Given a vector x ∈ Rn, it can be written as

x = x+ − x−.

x+ = max(x ,0) x− = max(−x ,0).

max(x ,0) = (max(x1,0),max(x2,0), . . . ,max(xn,0))

max(−x ,0) = (max(−x1,0),max(−x2,0), . . . ,max(−xn,0))

Consider x = (2,−3) in R2.

x+ = (2,0) and x− = (0,3).



x+ and x− are non-negative vectors.

x+ and x− are orthogonal.

Recall:
m(x) = (|x1|, |x2|, . . . , |xn|).

m(x) = x+ + x−.

If x ∈ Rn, then ‖x‖ = ‖m(x)‖.

‖x‖2 = ‖x+ − x−‖2

= 〈x+, x+〉+ 〈x−, x−〉 − 2〈x+, x−〉
= ‖x+‖2 + ‖x−‖2

= ‖x+ + x−‖2

= ‖m(x)‖2.

(3)



Lemma
If A is symmetric and copositive, then for any vector x ∈ Rn,

〈Am(x),m(x)〉+ 〈Ax , x〉 ≥ 0.

Our aim is to show that ρ(A) is an eigenvalue of A.

In otherwords, ρ(A) = λmax(A).

If
λmax(A) + λmin(A) ≥ 0,

then ρ(A) = λmax(A).



Proof.

λmax(A) = max{xT Ax : ‖x‖ = 1}.

λmin(A) = min{xT Ax : ‖x‖ = 1}.

Let
λmax(A) = qT Aq.

λmin(A) = pT Ap.

Note:
‖p‖ = 1, ‖q‖ = 1.



〈Ap,p〉+ 〈Am(p),m(p)〉 ≥ 0.

−〈Ap,p〉 ≤ 〈Am(p),m(p)〉
≤ 〈Aq,q〉

(4)

So,
〈Aq,q〉+ 〈Ap,p〉 ≥ 0.

This means that λmax(A) + λmin(A) ≥ 0.

Proof is complete.


